Application:
Fully automatic snow melt circuit isolated from boiler/heat source circuit through the use of a heat exchanger
(one low temp. circuit - fully automatic modulating water temperature for snow melting c/w snow/ice detector and in-slab sensor)
(one high temp. circuit off boiler/heat source primary loop for snow melt heat exchanger)

Note:
• Air vents, expansion tanks, pressure relief valves etc. For boiler as per local codes.
• Drawings are for HeatLink® suggested system layout only. User must determine if system layout will work for their particular application!
• Use isolation ball valves for all circuits and components.
• Expansion tank sizing for the snow melting circuit to take into account the ratio of glycol freeze protection in the system.

Control Sequence:
• SnowMelt control unit provides the correct water temperature for the HeatLink® snow melting system. By correlating outside air temperature, surface moisture, supply and return system water, boiler return water & slab temperature for the snow melt circuit, the control unit then activates the 4-way mixing valve motor which in turn modulates the supply water temperature to the snow melting circuits (see ELECT 1.12 & 1.13).
• Boiler to fire either: 1) Independently on its own operating controls or 2) By activation through a relay of the snow melting controls. APPLICATION TO USE OPTION (___).
• Primary pump (P-2) to be wired through a relay which will be activated by the snow melt control (see ELECT 2.5).
• Pumps (P-1 & P-2) to be wired directly with their own disconnect switches. System pump P-2 to operate either: 1) Continually or 2) By activation through a relay of the snowmelt controller (see ELECT 2.5)
FOR THIS PARTICULAR APPLICATION P-2 TO OPERATE AS PER OPTION (____).